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There have long been calls for better pedestrian planning tools within travel demand models, as they have been
slow to incorporate the large body of research connecting the built environment and walking behaviors. Most re-
gional travel demand forecasting performed in practice in the US uses four-step travel demandmodels, despite ad-
vances in the development and implementation of activity-based travel demand models. This paper introduces a
framework that facilitates the abilities of four-step regional travel models to better represent walking activity,
allowing metropolitan planning organizations (MPOs) to implement these advances with minimal changes to
existing modeling systems. Specifically, the framework first changes the spatial unit from transportation analysis
zones (TAZs) to a finer-grained geography better suited to modeling pedestrian trips. The MPO's existing trip gen-
eration models are applied at this spatial unit for all trips. Then, a walk mode choice model is used to identify the
subset of all trips made by walking. Trips by other modes are aggregated to the TAZ level and proceed through
the remaining steps in the MPO's four-step model. The walk trips are distributed to destinations using a choice
modeling approach, thus identifying pedestrian trip origins and destinations. In this paper, a proof-of-concept appli-
cation is included to demonstrate the framework in successful operation using data from the Portland, Oregon, re-
gion. Opportunities for futurework includemore research on the potential routes between origins and destinations
for walk trips, application of the framework in another region, and developing ways the research could be imple-
mented in activity-based modeling systems.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The personal and social benefits of increasing pedestrian travel are
plentiful and include better public health, reduced demands on the trans-
portation system, improved air quality, and reduced greenhouse gas
emissions. Recognizing these benefits,many cities are striving to promote
walking and are making strategic investments toward that end. In sup-
port of these public policies, research continues to strengthen our under-
standing of the links between urban form and walking (Saelens and
Handy, 2008; Saelens et al., 2003); pedestrian data collection methods
are becoming more widely available (AMEC, 2011; Ryus et al., 2014;
Schneider et al., 2005), and land-use data are increasingly more detailed
and disaggregate. In response to new policy demands, transportation
planning tools are beginning to take advantage of these developments
to represent walking behavior at a much finer spatial detail and with
greater sensitivity to environmental and other influences (Kuzmyak
et al., 2014).
ngineering, Maseeh College of
d, OR97201-0751, United States.
Despite progress on the research, data, and scale fronts, regional
travel demand forecasting models—key policy tools to evaluate project
alternatives—lag in their representation of walking activity. Although
about 10% of all U.S. trips are made by walking (Santos et al., 2011),
many regional models in the U.S. do not forecast non-motorized travel
(Singleton and Clifton, 2013). A travel modeling framework that
represents walking behavior using pedestrian-scale spatial units
and environmental influences could: improve model sensitivity to
more walking-relevant variables (e.g., specific activity locations, fine-
grained land-use mix, roadway and sidewalk conditions), yield results
that are more responsive to socio-demographic changes and policy in-
terventions (e.g., smart-growth strategies, pricing, pedestrian infra-
structure investments), provide more accurate estimates of mode
shifts and overall non-motorized and motorized trips, and generate
more useful model outputs for pedestrian planning, safety analyses,
health impact assessments, and greenhouse gas reduction evaluation.
Accordingly, metropolitan planning organizations (MPOs), the primary
stewards of regional travel demand models, would benefit from
updating their methods of modeling pedestrian behavior.

The purpose of this paper is to introduce a comprehensive frame-
work to represent pedestrian activity more effectively within four-
step travel demand models, currently the dominant structure
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of transportation forecasting tools used by MPOs in the U.S. This
framework:

• Incorporates the state of the knowledge in the use of non-motorized
modes. There is now a substantial body of literature about pedestrian
travel demand, and it is ready to be put into practice;

• Takes advantage of the widespread availability of disaggregate,
spatially-explicit, behavioral data and fine-grained information
about the built and natural environments;

• Operates at a scale relevant to pedestrians, so it is responsive to
shorter trip distances and detailed environmental data previously
masked by the zonal aggregation used in demand models; and

• Is scalable to fit within the traditional four-step travel demand fore-
casting framework, minimizing the degree of model reconfiguration
required of MPOs.

The framework and methods are supported by a proof-of-concept
application in the Portland, Oregon, region to demonstrate clearly
their value and contributions to practice.

The following sections include a brief review of research on
pedestrian behaviors and the practice of modeling pedestrians, an
overview of the pedestrian modeling framework, and a proof-of-
concept application of the framework. The paper concludes with
a discussion of the benefits and limitations of the framework, the op-
portunities and challenges of applying it in other regions, and needs
for future work.

2. Background

2.1. State of the research on environmental influences of pedestrian travel

Early efforts to model pedestrian travel were hampered by a lack
of pedestrian data and commensurate information about the built
environment at appropriate scales to assess walking behavior. How-
ever, the availability of data has vastly improved and thus pedestrian
research has advanced over the last two decades, particularly in
the literature linking travel behavior to the built environment
(e.g., Ewing and Cervero, 2010; Saelens and Handy, 2008; Saelens
et al., 2003). This research has identified many factors that influence
how frequently people walk (rate of trip generation), whether people
walk (mode choice), and activity locationswhere peoplewalk (destina-
tion choice).

While themagnitudes of the effects vary across studies, research has
identified a common set of built environment features that affect walk-
ing. Walk trip frequency and walk mode choice have been positively
related to higher residential and employment densities, greater land-
use mix or diversity, and more connected street networks or higher
intersection densities (Ewing and Cervero, 2010; Saelens and Handy,
2008; Saelens et al., 2003). Some results also point to positive associa-
tions with accessibility to transit (Schneider et al., 2009) and street-
level factors like sidewalks (Ewing and Cervero, 2010; Rodrıǵuez and
Joo, 2004). All of these built environmental influences appear to
affect walking even when controlling for self-selection (Cao et al.,
2009). Work now focuses on the appropriate spatial scale at which to
operationalize these measures (Gehrke and Clifton, 2014). In general,
smaller scale and individual-focused accessibility measures may be
more strongly associated with walking behavior than regional accessi-
bility measures (Greenwald and Boarnet, 2001; Saelens and Handy,
2008), emphasizing the need to use small geographic scales in pedestri-
an travel behavior research.

Very few studies have looked solely at environmental correlates
of pedestrian destination choice (Clifton et al., 2016). Results of more
general studies of walking suggest that distance to destinations is a mo-
tivating factor (Saelens and Handy, 2008). Borgers and Timmermans
(1986) studied retail shopping trips made on foot in the city center of
Maastricht, the Netherlands, and found that distance and retail floor
area had significant impacts. Eash (1999) used a pedestrian environ-
ment factor (PEF) in destination choice models for non-motorized
trips in Chicago, Illinois, but PEF was a relatively crude measure of con-
ditions for pedestrians and had limited policy relevance.
2.2. State of the practice on modeling pedestrian travel demand

Transportation planning practice has not kept pace with progress
on pedestrian research (Kuzmyak et al., 2014). Few regional travel-
demand models estimate pedestrian travel demand (Liu et al.,
2012; TRB, 2007), and those that do lack sophistication relative to
the models for motorized modes. A recent review of the practice in-
vestigated the treatment of walking within MPO travel-demand
models (Singleton and Clifton, 2013). Many models either excluded
pedestrian travel or combined walking and bicycling together as
a “non-motorized” mode. Only two-thirds of the largest MPOs
modeled non-motorized travel, and less than half of those models
distinguished walking from bicycling. Most MPO models with non-
motorized modes included them as alternatives in a mode-choice
model, while others created mode-split models before or after trip
distribution or used a separate non-motorized trip generation pro-
cess. Furthermore, the environmental influences on walking behav-
ior represented in MPO models inadequately reflect the state of the
knowledge. While most models included measures of residential
and/or employment density, few used diversity or design variables
or information on walking facilities to predict pedestrian demand.
Finally, the majority of large MPOmodels operationalized basic envi-
ronmental, demographic, and socioeconomic correlates of walking at
a coarse spatial scale (Singleton and Clifton, 2013).

This notable gap between pedestrian travel demand research and
practice exists for several reasons. First, accurate, detailed, and wide-
spread information on walking behaviors across an urban area histori-
cally has been difficult to obtain. The rich data collected for the studies
identified above tended to have smaller sample sizes and narrower
geographic scopes; regional travel model applications require larger
samples collected across entire metropolitan areas. Until the 1990s,
many regional household travel surveys omittedwalking trips altogeth-
er or only asked respondents to record walking trips of certain types or
those over a minimum distance or duration threshold (Clifton and
Muhs, 2012).

Second, relevant measures of the built environment were not al-
ways available. Metrics of density, diversity, and design have been
challenging to calculate for the entire spatial extent of the modeled
region because of the difficulties obtaining consistent land use and
transportation system data, particularly information about the exis-
tence and completeness of sidewalk networks (Peiravian et al.,
2014). Third, many model applications have relied (and continue to
rely) on large-scale transportation analysis zones (TAZs) and high
functional class street networks. This coarse scale fits nicely with
census geographies and eases computational modeling burdens by
dealing with smaller matrices (TRB, 2007), but it is a relic of an era
when travel models were designed to forecast demand for automobile
and transit modes, exclusively. Large zones can muddle the determi-
nants of walking, as TAZ averages of spatial and environmental
measures can obscure finer-grained variations thatmatter at the pedes-
trian scale. In addition,walking trips can be hidden as intra-zonal travel;
walking activity often occurs within neighborhoods and along lower-
volume roadways and off-street paths. As a result, TAZ-based models
can yield poor estimates of pedestrian travel demand and walking
distances-traveled. Given these considerations, many practicing trans-
portation modelers perceive travel survey and built environment data
limitations to be key barriers inhibiting a more realistic and policy-
sensitive representation of walking in applied models (Singleton and
Clifton, 2013).
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2.3. Motivations for a new framework

Today, many of the barriers identified in the previous sections have
been surmounted, and they are no longer valid excuses for inadequately
representing pedestrian activity in travel demand models. First, im-
proved travel survey questionnaires and GPS-based travel surveys
allow for more accurate and sometimes passive reporting of walking
trips (Clifton and Muhs, 2012). At the same time, pedestrian count
data collection methods have evolved (AMEC, 2011; Ryus et al., 2014;
Schneider et al., 2005), providing the ability to externally validate pe-
destrian model outputs. Second, fine-grained, archived spatial datasets
(e.g., Metro, 2011a) are becoming more widely available, including
point-, parcel-, or block-level measures of the built environment. Infor-
mation on pedestrian-scale environmental influences like sidewalk ex-
tent and off-street networks are being collected and geocoded for use in
transportation planning and modeling (APD, 2010). Third, the rapid
pace of computational processing power means smaller TAZs and
more complex street networks do not compromise model run times
(Balmer et al., 2009;Miller and Shaw, 2015). Small scale spatial analysis
units and full pedestrian networks can now be used to locate more pre-
ciselywalking trips and estimatemore accurately zone-to-zonewalking
distances for an entire region.

Indeed, some transportation agencies are taking advantage of these
advances to create improved planning tools for estimating pedestrian
demand (Kuzmyak et al., 2014; Singleton and Clifton, 2013). Enhance-
ments to four-step travel demand models include increasing the
models' sensitivities to built and natural environmental factors and re-
ducing the size of TAZs. Post-processing tools can take travelmodel out-
puts and use GIS and other methods to predict walking activity more
finely. Other tools involve estimating pedestrian demand directly from
local environmental and street characteristics (Hankey et al., 2012;
Schneider et al., 2009), separately from a travel demandmodel. A recent
report recommended pedestrian demand estimation tools for use in
planning projects, that operate at a small spatial scale with detailed
representation of environmental influences, can be integrated with
multimodal travel demandmodels, and have the opportunity to operate
as stand-alone tools (Kuzmyak et al., 2014).

In summary, with research reaching consensus on the environmen-
tal correlates with walking, and improved travel behavior and built en-
vironmental data being collected at relevant scales, it is time to rethink
how pedestrian activity is represented in travel demand models,
Fig. 1. Conceptual diagram of proposed
particularly within the dominant four-step modeling approaches. In
this paper, we address this need by presenting and applying a pedestri-
anmodeling framework that is designed to narrow the gap between re-
search and practice.

3. Method

This section describes the framework to represent pedestrian travel
within a four-step travel demand modeling paradigm, along with
examples from a proof-of-concept application of the framework in the
Portland, Oregon, region.

3.1. Pedestrian modeling framework

The framework is illustrated in Fig. 1 and includes the following
procedures to facilitate improving representation of the pedestrian
environment and walking behaviors:

1. Change the spatial unit of analysis for trip generation from transpor-
tation analysis zones (TAZs) to smaller pedestrian analysis zones
(PAZs). Apply trip generation models at this geographic scale;

2. Estimate and apply a walkmode split model to predict the portion of
trips generated in each PAZ that are made bywalking. This binary lo-
gistic regression model includes spatially disaggregate, detailed built
environment and socioeconomic variables that quantify associations
between walking and the physical environment;

3. Aggregate trips by vehicular modes (auto, transit, and bicycle) to the
zonal structure of the regional travel model (TAZs) and proceed
through the remaining stages (destination choice, mode choice, and
assignment) for these modes; and

4. In a parallel procedure, estimate and apply a pedestrian destination
choice model to distribute the number of walk trips generated in
each PAZ (step 2 above) to destination PAZs.

3.2. Proof-of-concept application

We developed this pedestrian modeling framework over the course
of several research projects in coordination with Metro, the metropoli-
tan planning organization (MPO) for the Portland, Oregon, region
(Clifton et al., 2013, 2015). Metro's existing four-step travel demand
model included walking as an alternative in the mode choice model,
pedestrian modeling framework.
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as a function of distance and a local accessibilitymeasure (Metro, 2008).
The following subsections describe each step of the framework in more
detail, including the data andmethods used for estimation and applica-
tion of the framework to the Metro example. Section 4 presents the re-
sults of this proof-of-concept application. Section 5 discusses the
potential to generalize the pedestrian modeling framework to other
communities.

3.3. Spatial unit: pedestrian analysis zones

To remedy the problems of representing walking using the large
zonal structures (TAZs) found in most regional travel demand models,
this pedestrian modeling framework used a new spatial structure
called pedestrian analysis zones (PAZs). The PAZs in this study were
264 ft.-by-264 ft. (80 m-by-80 m) raster grid cells; thus, the edges of a
PAZ represent a one-minute walking distance at 3.0 mph (4.8 kph).
This choice of geography was one of convenience, as the same grid
cells were already being used by Metro for other planning tasks (see
Section 3.4), and one PAZ is roughly the size of a Downtown Portland
city block. Using a compatible spatial unit populated with archived
data is crucial for the long-term success and usefulness of the pedestrian
modeling framework. In contrast to blocks or parcels, grid cells have a
uniform size, regardless of land-use density, that makes zonal calcula-
tions and comparisons easier. Over 1.5 million PAZs (compared to
only 2147 TAZs) cover the four counties included in Metro's model of
the Portland region: Multnomah, Clackamas, andWashington Counties
in Oregon, and Clark County, Washington. Fig. 2 illustrates the differ-
ence between PAZs and TAZs.

3.4. Data sources

Basic inputs to travel demand models include zonal estimates of
the number of households with different household characteristics,
the number of jobs by employment type, and various measures of the
Fig. 2. Comparison of two zonal structures—PAZs an
Source: Created by the authors.
built environment. In this application, the number of households in
each PAZ was calculated from parcel-based estimates of households,
weighted to match the 2010 U.S. Census block-group totals. Household
characteristics were not available at the parcel level, so the joint distri-
bution of household characteristics (by size, age of head, income, and
numbers of workers, children, and autos) for all PAZs within a TAZ
was assumed tomatch that TAZ's joint distribution of household charac-
teristics. PAZ-level employment by type was computed from the point
locations of establishments in the 2009 Quarterly Census of Employ-
ment and Wages database (BLS, 2009).

Measures of the built environmentwere obtained from two different
data sources. Many built environment measures were constructed from
the 2011 version of Metro's Regional Land Inventory System (Metro,
2011a), a GIS database of archived regional geospatial data. Others, es-
pecially those used to construct a composite pedestrian environment
measure (see Section 3.6), came from Metro's Context Tool (Metro,
2011b), a spatial dataset quantifying the character of the urban environ-
ment through multiple objective measures of a place. The Context Tool
measures were defined at the scale of the PAZs. Each measure was first
calculated around PAZ centroids using a circular buffer (usually a 0.25-
mile (0.40-km) radius) and then reclassified using natural breaks
into five categories: 1 (low) to 5 (high) (Singleton et al., 2014). See
Section 4.2 for the definition of each Context Tool measure.

Individual models within a travel demand forecastingmodel system
are estimated using travel survey data. To estimate models for our
pedestrian modeling framework, we employed travel behavior data
from the 2011 Oregon Household Activity Survey, or OHAS (OMSC,
2011). One-day travel diaries were collected on weekdays from April
to December 2011 for 6108 households living in the four-county
Portland, Oregon, metropolitan area, yielding 55,878 full trips. Public
transit access and egress trips were excluded for simplicity, resulting
inmodels that underestimate total walking activity. Tripswere grouped
by purpose: home-based work, shopping, recreation, school, and other;
and non-home-based work and other. Only about 90% of these trips
d TAZs—in part of the Portland, Oregon, region.
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(N = 50,271) were used for model estimation. A 10% random sample,
stratified by pedestrian/vehicular mode and trip purpose, was withheld
for model validation (not presented here). The estimation sample
contained 4094 walk trips (8%, unweighted). Of these walk trips, 44%
were TAZ-intrazonal while only 9% were PAZ-intrazonal, highlighting
an additional advantage of using smaller spatial units to represent
walking. Trip origins and destinations were located using addresses
and assigned to PAZs and TAZs.

3.5. Trip generation

The first stage of the four-step travel demand modeling
process—trip generation—calculates the number of trips by all modes
produced by and attracted to the model's spatial units based on demo-
graphic inputs. Our pedestrianmodeling framework adopted Metro's
(2008) existing cross-classification trip production models and trip
rates, developed for use with TAZs. Assuming scalable models (see
Section 4.1), we applied them at the PAZ level. Trip attractions were
not used because Metro's model structure includes destination choice
models to distribute trips. The cross-classification models predict the
number of trips Ti produced in zone i as a function of trip rates th and
the number of householdsHHh in category h, according to the following
equation:

Ti ¼ ∑h∈H th∙HHhð Þ ð1Þ

Depending on the trip purpose, demographic categories are defined
based on a subset of household characteristics: size, age of head, and
numbers of workers and children (Metro, 2008).

3.6. Pedestrian index of the environment (PIE)

To address multicollinearity issues related tomodeling the effects of
the built environment on travel behavior, we constructed a new index:
the pedestrian index of the environment, or PIE (Singleton et al., 2014).
The PIE was based on Metro's Context Tool (Metro, 2011b), the spatial
dataset of multiple environmental measures available at the PAZ level
(see Section 3.4). Six measures were chosen for theoretical association
withwalking: activity (population and employment) density, transit ac-
cess, block size, sidewalk extent, comfortable facilities, and urban living
infrastructure (ULI). The comfortable facilities measure, while based on
proximity to bicycle facilities, is relevant to walking behavior because
it identifies multi-use paths and low-traffic streets as most comfortable.
ULI includes shopping and service destinations used in daily life
(e.g., banks, pharmacies, dry cleaners, grocery stores, restaurants)
(Johnson Gardner, 2007). Similar measures have been used in other indi-
ces of the pedestrian environment (Peiravian et al., 2014). An exploratory
analysis showed that many of the Context Tool's built environment mea-
sureswere highly correlatedwith one another. Eachmeasure is described
in Table 1 (see Section 4.2).
Table 1
PIE data sources and calibration results.

Measure Definition

Activity density # people + # jobs within ¼ mile
Transit access # transit stops within ¼ mile,

weighted by frequency
ULI # neighborhood businesses within ¼ mile
Block size # blocks within ¼ mile
Sidewalk extent Miles of continuous sidewalks within ¼ mile
Comfortable facilities Miles of low-stress/traffic calmed streets
Within 1 mile 1–5
Total

a See other sources (Clifton et al., 2013; Singleton et al., 2014) for full details on PIE's calibra
To calibrate the PIE, the six relevant Context Tool measures were
weighted based on the magnitude of their association with walking. A
series of binary logistic regression models were estimated, regressing
the choice of walking for OHAS trips against each built environment
measure BEm, according to the following equations:

Pwalk ¼
eVwalk

1þ eVwalk
ð2Þ

Vwalk ¼ α þ βm∙BEm: ð3Þ

Based on the estimated slope coefficients (βm), weights were gener-
ated such that PIE varied from a minimum weighted value of 20 to a
maximum weighted value of 100 (Singleton et al., 2014).

3.7. Walk mode split

A central component in our pedestrian modeling framework is the
walk mode split model (Clifton et al., 2013), which separates trips pro-
duced during the trip generation stage into pedestrian and vehicular
(auto, transit, andbicycle) trips. Inmost travelmodels,walk trip segments
serving as access and/or egress to/from other modes (e.g., transit) are
modeled using a separate process (usually nested within mode choice).
In the framework presented here, only single-mode walk trips between
two activity destinations were considered.

Using OHAS trips, we estimated binary logit walkmode split models
(segmented by trip purpose) to predict the probability of walking for a
given trip produced in a particular PAZ i. Binary logit is an appropriate
practical and theoretical choice, as it is used by many agencies
(Singleton and Clifton, 2013) and researchers (Cervero and Duncan,
2003; Krizek and Johnson, 2006) for non-motorized mode split/choice
models. Explanatory variables included traveler characteristics TCc,
matching those in Metro's (2008) model; PIE, our composite measure
of the built environment; and transportation system variables TSt, as
shown in the following equation:

Vwalk ¼ ∑c∈TC βc∙TCcð Þ þ βPIE∙PIEi þ∑t∈TS βt ∙TSt;i
� �þ β0: ð4Þ

Measures of the generalized cost of travel are not available for use in
the walk mode split model because destinations of trips have not yet
been determined in the model. Linking trip ends via destination choice
occurs in a later step. Instead, we used accessibilitymeasures as proxies.
Local accessibility was represented by PIE, while regional accessibility
was represented by some of the transportation system variables.

3.8. Pedestrian destination choice

After estimating the number ofwalk trips produced in each zone, the
pedestrian modeling framework predicts the destinations for those
walk trips (Clifton et al., 2016). Instead of common growth factor or
gravity model approaches to trip distribution (DHS, 1993; Ortúzar and
Willumsen, 2011), we used destination choice models, which predict
Range Weighta Minimum Maximum

1–5 4.615 4.615 23.075

1–5 3.529 3.529 17.645
1–5 3.120 3.120 15.600
1–5 3.086 3.086 15.430
1–5 2.842 2.842 14.210

2.808 2.808 14.040
20.000 100.000

tion.
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the probability of selecting a particular destination zone for a given trip.
Using walk trips in the OHAS dataset, we estimated multinomial logit
pedestrian destination choice models (segmented by trip purpose) to
predict the probability P of a walk trip going from production zone i to
attraction zone j, given a choice set of attraction zones K, according to
the following equation:

P j;i ¼
eV j;i

∑k∈K eVk;i
� � : ð5Þ

Tomake the choice set generation andmodel estimation/application
processes more feasible, we split the pedestrian destination choice pro-
cess into two sequential models, as shown in Fig. 3. First, we aggregated
PAZs into superPAZs (a grid of 5×5=25 PAZs) and estimated destina-
tion choice models using superPAZs as described above. These destina-
tion choice sets were constructed by randomly sampling up to 10 zones
(including the production zone and the chosen attraction zone) located
within 3 miles (4.8 km) of the production zone; more than 99% of
OHAS walk trips were 3 miles or less in length. Second, we developed
destination choice models to allocate walk trips from an attraction end
superPAZ to an attraction end PAZ. These destination choice sets were
a full enumeration of the up to 25 PAZs contained within each superPAZ.

Consistent with destination choice modeling practice, utility equa-
tions were specified using impedance terms, a log-sum of size terms,
and pedestrian trip supports and barriers, as shown in the following
equation:

V j;i ¼ βImpImpij þ βsize ln ∑s∈S eβs Sizes; j
� �� �þ∑p∈P βpSupportp; j

� �

þ∑b∈B βbBarrierb; j
� �

: ð6Þ

Impedance Impij was represented by the shortest-path network dis-
tance (including off-street paths) between the centroids of zones i and j.
Size terms Sizes included zonal employment by type and the number of
households. We also used destination measures of pedestrian supports
Supportp , j, including the presence of parks and PIE scores, as well as
pedestrian barriers Barrierb , j, including the presence of freeways, the
proportion of industrial-type jobs (a proxy for industrial land uses),
and the average slope in the destination zone. The superPAZ-to-PAZ
destination allocation models used the same model specification,
excluding the impedance term (but they are not presented here).
Fig. 3.Walk trip destination ch
4. Results

The pedestrian modeling framework as described in Section 3 was
applied to the Portland Metro region. Abbreviated results from the
calibration of PIE, the estimation of walk mode split and pedestrian
destination choice models, and the application of the entire pedestrian
modeling framework are presented in the following subsections.
In most cases, only results for the “home-based other” trip purpose
(excluding home-based work, shopping, recreation, and school pur-
poses) are presented as an example. Full results are available elsewhere
(Clifton et al., 2013, 2016).
4.1. Trip generation

Fig. 4 is a map of home-based other trips produced. It demonstrates
the level of spatial resolution obtainable from trip generation model
outputs when using PAZs, which can better capture the variation in
land development intensity, pedestrian supports, and other built envi-
ronment features associated with walking than TAZs. As previously
mentioned (see Section 3.4), base year (2010) PAZ-level trip production
model inputs were constructed from point/parcel-level data when
possible. To test for empirical scalability of the cross-classification trip
generation models, we aggregated trips produced at the PAZ level to
TAZs. Our results almost perfectly matched TAZ-level trip productions
(Clifton et al., 2013), suggesting that it is feasible to use smaller spatial
units, such as PAZs, as the basis for models of trip generation.
4.2. Pedestrian index of the environment (PIE)

Results from the calibration andweighting of the pedestrian index of
the environment (PIE) are shown in Table 1. Based upon the coefficients
from the univariate models described in Section 3.6, the activity density
measure was weighted the most, while the measure of comfortable
facilities was weighted the least. The variation of PIE values across the
Portland region is shown in Fig. 5. The highest PIE scores of 100 were
found only in the central city in Downtown Portland, while scores of
70–80 represented neighborhood commercial centers and suburban
downtowns. Predominantly residential areas saw PIE scores ranging
from 60 for inner-city neighborhoods to 40 for disconnected suburban
subdivisions. The lowest PIE values of 20 were found in rural, undevel-
oped, and forested areas. (See Singleton et al., 2014, for a more detailed
description of PIE.)
oice modeling framework.



Fig. 4.Map of home-based other trip productions.
Source: Created by the authors.
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4.3. Walk mode split

Walk mode split model estimation results for home-based non-
work trips (including home-based shopping, recreation, school, and
other purposes) are shown in Table 2. Full model estimation results
Fig. 5. Map of the pedestrian inde
Source: Created by the authors.
are documented elsewhere (Clifton et al., 2013). Independent variables
included six traveler characteristics (household size, income, age of
household head, workers, children, auto ownership); the PIE index
to represent the pedestrian environment; two transportation system
variables (the local density of freeways and trails); and trip purpose
x of the environment (PIE).



Table 2
Walk mode split model estimation results for home-based non-work trips.

Variable Definition β SE p OR
(eβ)

Traveler characteristicsa

Household size 2 people 0.191 0.066 0.004 1.210
Age 56 b age ≤ 65 −0.242 0.067 0.000 0.785
Workers 1 worker 0.208 0.069 0.003 1.231

2 workers 0.301 0.068 0.000 1.352
Children 1 child 0.295 0.074 0.000 1.343

2 children 0.455 0.074 0.000 1.576
3+ children 0.479 0.089 0.000 1.615

Auto ownership 0 autos 1.089 0.098 0.000 2.970
2 autos −0.463 0.056 0.000 0.629
3+ autos −0.690 0.071 0.000 0.502

Built environment
PIE Pedestrian index of the environment 0.043 0.002 0.000 1.044
PIE flag Trip end located beyond PIE extents 0.530 0.295 0.072 1.699

Transportation system
Freeways Miles of freeways within ⅛ mile −1.093 0.363 0.003 0.335
Washington Trip end located in Washington state 0.792 0.286 0.006 2.208

Trip purposesb

HB shopping Home-based shopping purpose −0.145 0.068 0.034 0.865
HB recreation Home-based recreation purpose 0.288 0.058 0.000 1.333
HB school Home-based school purpose 0.444 0.061 0.000 1.558
Constant Constant −4.377 0.123 0.000 0.013

Overall model statistics
Trip ends # and %: vehicular vs. walk 23,960 90.6% 2490 9.4%
Model fit Log-likelihood: null vs. full −8803 −7386
Model fit McFadden's adjusted R2 0.160

a Reference cases for traveler characteristics are people living in households with: 1 person, household head aged 26 to 54, 0 workers, 0 children, and 1 auto.
b The home-based other trip purpose is the reference case.
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dummies. Traveler characteristics and transportation system variables
with non-significant coefficients were removed from the model.
Model goodness-of-fit was modest, with a McFadden's adjusted R2

value of 0.16.
Results matched expectations. A one-point increase in PIE was asso-

ciated with a 4.4% increase in the odds of walking for home-based non-
work trips. All else equal, people in householdswith childrenweremore
likely to walk, and the odds of walking increased with the number
of children. Furthermore, automobile ownership was negatively associ-
ated with walking: members of a zero-vehicle household had nearly
three times the odds of walking than members of a one-vehicle house-
hold. An application of thewalkmode splitmodel for home-based other
trips to part of the Portland region is illustrated in Fig. 6.

4.4. Pedestrian destination choice

The home-based other trip pedestrian destination choice model is
presented as an example (Table 3). Full model estimation results for
other purposes are documented elsewhere (Clifton et al., 2016). Inde-
pendent variables included network distance as the impedance mea-
sure; retail, government, and all other employment and households as
size measures; the average PIE score of PAZs within the superPAZ and
the presence of parks as measures of a supportive pedestrian environ-
ment; and the presences of freeways, the proportion of industrial-type
employment (a proxy for industrial land uses), and the average slope
within the superPAZ as measures of barriers to walking. Interactions
of traveler characteristics (income, presence of children, auto owner-
ship) with distance were tested; there were no significant differences.
The model fit was indicated by a McFadden's adjusted-R2 value of 0.53.

Results suggested that longer distances reduced the odds of pedes-
trians choosing a particular destination. A one-mile increase in network
distance yielded approximately an 86% decrease in odds. Destination
zones with more employment were more attractive, particularly those
with retail and government jobs; one additional retail or government
job was worth about 46 additional jobs of other types. Measures of the
built environment both supported (PIE) and deterred (slope) walking
to a destination zone. A one-point increase in average PIE score was as-
sociated with a 2.5% increase in the odds of choosing that destination
zone. An application of the pedestrian destination choice model for
home-based other trips to part of the Portland region is illustrated by
the map in Fig. 7.

5. Putting the framework into practice

This section discusses opportunities and limitations for generalizing
the proposed pedestrian modeling framework and moving it more
widely into practice. There are considerations for each step of the frame-
work that will be unique to the structure of the parent travel model.

A variety of pedestrian-specific geographic analysis units are avail-
able from which to choose. PAZs could be blocks, street segments,
nested sub-TAZs, uniform grid cells, parcels, or other units, depending
on the planning needs and data availabilities/limitations of a particular
region. Parcels and other zones based on built or natural environment
features are often larger in low-density areas, reducing the ability of
models to detect isolated hubs of pedestrian activity (e.g., near malls,
near recreation facilities). On the other hand, small uniform grid cells
may be unnecessary or introduce new challenges with larger land
uses (e.g., parks, campuses). Smaller and less uniform PAZs may in-
crease computational burdens. The development of PAZ geographies
should also consider whether the necessary land use and built environ-
ment data are available and will be maintained and forecast at these
spatial scales.

Trip generation for all modes, segmented by trip purposes, is
estimated at the PAZ level (see Section 4.1), requiring appropriate
data and models. PAZ-level inputs need to be prepared and the MPO's
trip generation equations must be scalable. Some TAZ-level inputs



Fig. 6.Map of home-based other walk trip productions.
Source: Created by the authors.
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(especially traveler characteristics) may need to be allocated to PAZs
when data at the smaller scale are not available. This allocation process
is not trivial and should be carefully considered when choosing PAZ ge-
ographies. Conceptually, most trip production and attraction
models—including cross-classification and (linear or other) regression
model structures—are independent of geographic scale. The operation
of some trip generationmodels may have to be adjustedwhen assump-
tions of spatial scale have been built-in (e.g., zonal attractions = zonal
productions).

The walk mode split model has many possible constructs. Various
model structuresmay be and have been used for this purpose, including
binary logistic regression, linear regression, and simple percentages.
Given sufficient numbers of observations, the walk mode split model
can be segmented to match the trip purposes (or aggregations thereof)
from the travel model. In general, the choice of model structure should
Table 3
Destination choice model estimation results for home-based other walk trips.

Variable Definition

Impedance Network distance between zones (mi)
Size Total elemental destinations (logged)
Ret./gov. emp. Retail & government employment (# jobs)
All other emp. All other employment (# jobs)
Households Households (#)
Parks Park in zone (yes)
Avg. PIE Mean of PIE score of all PAZs in zone
Avg. slope Mean of slope (°) within zone
Freeways Freeway in zone (yes)
Industrial Proportion of industrial-type jobs

Overall model statistics
N Number of observations
Model fit Log-likelihood: null vs. full
Model fit McFadden's adjusted R2
be guided by the availability of data and the nature of the relationship
between walking and other variables.

The measure of the pedestrian environment (PIE) is specific to
Portland in its variable structure and its scale. The PIE used specific
Context Toolmeasures thatmay be unavailable elsewhere. Accordingly,
it may be necessary to construct a region-specific PIE using locally-
available data in order to apply the pedestrian modeling framework.
For example, it may be desirable to construct amore localized “comfort-
able walking facilities” measure using traffic volumes, speeds, lanes,
buffers, and crossing information, if such data are available. On the
other hand, a more universal PIE measure could be estimated from
widely-available built environment and national-level travel behavior
data (EPA, 2013; FHWA, 2015). Such national-level built environment
data could also be used for PIE if an agency does not have access to or
the budget to collect more localized or smaller-scale data, although
β SE p OR
(eβ)

−1.94 0.062 0.00 0.14
0.40 0.034 0.00 N/A
3.8 0.62 0.00 46.06
0.0 N/A N/A 1.00

−2.0 0.87 0.02 0.14
0.12 0.094 0.22 1.12
0.025 0.007 0.00 1.03

−0.43 0.062 0.00 0.65
0.10 0.191 0.60 1.11

−0.40 0.224 0.08 0.67

1108
−2511 −1181

0.526



Fig. 7.Map of home-based other walk trip destination choice probabilities. (Source: Created by the authors.)
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potentially at a loss of explanatory power. Because it was calibrated
with observed walking data from the Portland area, a PIE measure for
another region may have different weights.

Pedestrian trips from the trip generation and walk mode split
models need to be distributed to destinations. There are manymethods
available to achieve this task. Legacy methods like growth factors and
gravity model approaches are described in-depth in the literature (CS,
2012; Ortúzar andWillumsen, 2011). The state of practice is advancing
toward destination choice models for individual travelers, which take
the form of discrete choicemodels; however, guidance formodel devel-
opment is less abundant. The analyst should decide on a process to dis-
tribute trips based on data availability, the time available for estimating
models, the trip distribution method used in the parent travel model,
and the desired resolution and behavioral relevance of outputs.

If destination choice modeling is the chosen method, several issues
should be considered, including: the appropriate spatial unit, choice
set selection and size, and model specification. As with previous pedes-
trian modeling steps, geographic scale is fundamental: choice alterna-
tives should remain at a scale relevant to pedestrian travel. However,
it may be necessary or useful to aggregate PAZs to a slightly larger geo-
graphical unit in order to create a smaller destination choice set and to
facilitate computations.

Another destination choice model consideration involves specifying
the choice set. Unlike the mode choice problem, where there is a small
and finite set of modal alternatives, the set of possible destination alter-
natives is very large and unknown. Researchers offer guidance on desti-
nation choice set generation methods (Ben-Akiva and Lerman, 1985;
Lemp and Kockelman, 2012; Ortúzar and Willumsen, 2011; Pagliara
and Timmermans, 2009). Previous work also offers guidance on the
specification of destination choice models (Ben-Akiva and Lerman,
1985), including issues of agglomeration and competition (Bernardin
et al., 2009; Borgers and Timmermans, 1988; Kitamura, 1984; Pozsgay
and Bhat, 2001).

Additionally, because this stage of destination choice modeling is
specific to pedestrians, it is appropriate to include measures of local ac-
cessibility, the built environment, and socio-economic characteristics in
model specifications. Currently, there is little guidance available in the
literature to inform model structures that are oriented around the des-
tination choices of pedestrians. Our work on pedestrian destination
choice (Clifton et al., 2016) adds to this literature and may be useful
for agencies looking to adopt the pedestrian modeling framework.

Finally, a random sample of trips from the household travel survey
data set could be retained for model validation. Otherwise, outside
data sources like the National Household Travel Survey, American Com-
munity Survey (for home-based work trips), Safe Routes to Schools
classroom counts (for home-based school trips), or specialized regional
studies (e.g., trip generation studies, establishment-based intercept sur-
veys) might be used. Given that most areas lack adequate validation
data, there is an opportunity to implement region-wide intersection
counts for an order-of-magnitude validity check on model estimates.
While motor vehicle demand forecasts are often validated using traffic
counts, most regional pedestrian counting programs are still in their
early stages of development (Ryus et al., 2014).

6. Discussion and conclusions

The pedestrian modeling framework presented here has a wide
range of benefits to travel demand modeling and pedestrian planning.
Foremost, the framework improves and expands upon the available
methods by which pedestrian activity is represented in travel demand
models (Clifton et al., 2013). Using our framework, pedestrian demand
can be forecast for an entire metropolitan region with spatial acuity and
sensitivity to small-scale variations in the built environment. The frame-
work improves travel model sensitivity to pedestrian-relevant factors,
yielding results that are more responsive to socio-economic changes
and policy interventions (e.g., smart-growth strategies, pedestrian
infrastructure investments).

Not only do these methods provide a more accurate accounting
for walking trips within a regional travel model (and potentially
alongside, as a standalone tool), but they also have broader plan-
ning and policy applications. Area-wide estimates of pedestrian ac-
tivity can be used for many planning activities. Health impact
analyses may utilize physical activity estimates (derived fromwalk-
ing durations) for sub-area comparisons or equity assessments.
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Predicted numbers of walk trips are useful for crash risk assessment
activities, such as identifying areas with high potential for walking
but suppressed pedestrian activity due to major roadway barriers.
The walk mode split and pedestrian destination choice models' sen-
sitivities to a variety of policy interventions means that the frame-
work can evaluate the relative merits of a suite of pedestrian
infrastructure investments and help to prioritize projects like side-
walk infill in particular corridors.

Despite the broad potential for planning applications, our pedestrian
modeling framework is not without limitations. For practical reasons,
the framework is linked to the traditional four-step travel demand
modeling approach and its shortcomings. The development of
activity-based models (ABMs) attempts to mitigate some of the limita-
tions of four-step models, including aggregation bias and unrealistic
representations of the behavior of travelers, including interrelated
choices, household interdependencies, and tours (Castiglione et al.,
2015). However, like ABMs, our pedestrian modeling framework is
built around discrete choice models, and we see opportunities for
ABMs to adopt smaller spatial units andmoremeasures of the pedestri-
an environment, as our framework recommends. Another strong ad-
vantage of the framework—its fine-grained spatial scale—also yields
challenges for forecasting. The framework requires inputs like socio-
demographic characteristics and measures of the built environment to
be constructed for future scenarios at micro-scale level of pedestrian
analysis zones, a difficult task. Furthermore, it is often challenging for
planners to predict the specific changes to the built environment
(e.g., sidewalks, transit access) that might result from transportation
projects and other future investments. Fortunately, the use of environ-
mental constructs such as the PIE might allow planners to develop sce-
narios (e.g., a 20% increase in PIE scores) without having to prepare
specific infrastructure improvements. Future work should attempt to
develop improved methods of forecasting socio-demographic and
built environment inputs at small spatial scales while examining vari-
ous levels of intervention specificity. There may be potential to borrow
techniques used in disaggregate land use forecasting models (Waddell,
2002).

Nevertheless, this pedestrian modeling framework advances pe-
destrian planning tools. There will undoubtedly be many improve-
ments to this framework over time as the availability of
disaggregate travel behavior, built environment, and household
data increase. In order to further promote the inclusion of pedes-
trians in demand forecasting, there are several issues that must be
taken up by the research community. For one, this framework did
not address the issue of pedestrian route choice (Guo and Loo,
2013). The state of the research is too immature and route choice in-
formation was not available to permit inclusion. Additionally, as op-
posed to the traditional 4-step modeling process in which mode
choice follows trip distribution, our pedestrian modeling frame-
work splits trips by mode prior to destination choice. Although
this was a practical choice to avoid dealing with massive matrices
for destination choice, it also has theoretical and empirical implications
(e.g., the inability to use a generalized cost formode choice). Futurework
could use pedestrian route choice logsums in the destination choice
model, and destination choice logsums in the walk mode split model
to tie all the models together (Clifton et al., 2016). Additional research
should also investigate the extent towhich peoplemay choose a destina-
tion first, choose to walk first, or consider destination andmode choices
simultaneously. Finally, more research into the decision processes of pe-
destrians is needed, such as their considerations when choosing a desti-
nation, willingness to walk certain distances (Millward et al., 2013), and
sensitivity to environmental factors for different socioeconomic groups.
As demand models turn toward activity-based approaches, these issues
will only becomemore pronounced. In themeantime,MPOs can take ad-
vantage of the opportunity offered by our pedestrian modeling frame-
work to improve their existing tools and narrow the gap between
research and practice.
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